The effective treatment of autoimmune disorders can greatly benefit from disease-specific biomarkers that are functionally involved in immune system regulation and can be collected through minimally invasive procedures. In this regard, human serum IgG N-glycans are promising for uncovering disease predisposition and monitoring progression, and for the identification of specific molecular targets for advanced therapies. In particular, the IgG N-glycome in diseased tissues is considered to be disease-dependent; thus, specific glycan structures may be involved in the pathophysiology of autoimmune diseases. This study provides a critical overview of the literature on human IgG N-glycomics, with a focus on the identification of disease-specific glycan alterations. In order to expedite the establishment of clinically-relevant N-glycan biomarkers, the employment of advanced computational tools for the interpretation of clinical data and their relationship with the underlying molecular mechanisms may be critical. Glycoinformatics tools, including artificial intelligence and systems glycobiology approaches, are reviewed for their potential to provide insight into patient stratification and disease etiology. Challenges in the integration of such glycoinformatics approaches in N-glycan biomarker research are critically discussed.
Read full abstract