Reactivation of endogenous retroviruses (ERVs) has been proposed to be involved in aging. However, the mechanism of reactivation and contribution to aging and age-associated diseases is largely unexplored. In this study, we identified a subclass of ERVs reactivated in senescent cells (termed senescence-associated ERVs (SA-ERVs)). These SA-ERVs can be bidirectional transcriptionally activated by activating transcription factor 3 (ATF3) to generate double-stranded RNAs (dsRNAs), which activate the RIG-I/MDA5-MAVS signaling pathway and trigger a type I interferon (IFN-I) response in senescent fibroblasts. Consistently, we found a concerted increased expression of ATF3 and SA-ERVs and enhanced IFN-I response in several tissues of healthy aged individuals and patients with Hutchinson-Gilford progeria syndrome. Moreover, we observed an accumulation of dsRNAs derived from SA-ERVs and higher levels of IFNβ in blood of aged individuals. Together, these results reveal a previously unknown mechanism for reactivation of SA-ERVs by ATF3 and illustrate SA-ERVs as an important component and hallmark of aging.
Read full abstract