Abstract The snow ablation optimizer (SAO) is a new metaheuristic algorithm proposed in April 2023. It simulates the phenomenon of snow sublimation and melting in nature and has a good optimization effect. The SAO proposes a new two-population mechanism. By introducing Brownian motion to simulate the random motion of gas molecules in space. However, as the temperature factor changes, most water molecules are converted into water vapor, which breaks the balance between exploration and exploitation, and reduces the optimization ability of the algorithm in the later stage. Especially in the face of high-dimensional problems, it is easy to fall into local optimal. In order to improve the efficiency of the algorithm, this paper proposes an improved snow ablation optimizer with heat transfer and condensation strategy (SAOHTC). Firstly, this article proposes a heat transfer strategy, which utilizes gas molecules to transfer heat from high to low temperatures and move their positions from low to high temperatures, causing individuals with lower fitness in the population to move towards individuals with higher fitness, thereby improving the optimization efficiency of the original algorithm. Secondly, a condensation strategy is proposed, which can transform water vapor into water by simulating condensation in nature, improve the deficiency of the original two-population mechanism, and improve the convergence speed. Finally, to verify the performance of SAOHTC, in this paper, two benchmark experiments of IEEE CEC2014 and IEEE CEC2017 and five engineering problems are used to test the superior performance of SAOHTC.
Read full abstract