In this paper, an efficient method is proposed for optimal allocation and sizing of Thyristor Controlled Series Compensator (TCSC) to improve the technical and economic indices of a power network with deterministic and stochastic load models. First, the compensator allocation is done in the transmission system with the deterministic load model. After calculating the technical and economic indices of the network in the presence of a deterministic load model, the proposed method is applied to the system with a stochastic load model. The two-point estimation method is used for simulating the stochastic conditions. The indices of voltage deviation and economics of the system are optimized for selecting the optimal location and size of TCSCs. The economic index comprises loss cost, cost of the produced active power of generators and also the costs of installation, operation and maintenance of TCSCs. The multi-objective particle swarm optimization (MOPSO) is utilized to optimize the objective functions. After the multi-objective optimization, the fuzzy decision method is employed to extract one of the Pareto-optimal solutions as the best compromise one. For evaluating the proposed method, comprehensive simulations have been performed on the IEEE 39-bus network by using MATLAB/Matpower software. The simulation results clearly prove the remarkable performance of the proposed method in improving the technical and economic indices of the system.