Leaf segmentation is crucial for plant recognition, especially for tree species identification. In natural environments, leaf segmentation can be very challenging due to the lack of prior information about leaves and the variability of backgrounds. In typical applications, supervised algorithms often require pixel-level annotation of regions, which can be labour-intensive and limited to identifying plant species using pre-labelled samples. On the other hand, traditional unsupervised image segmentation algorithms require specialised parameter tuning for leaf images to achieve optimal results. Therefore, this paper proposes an unsupervised leaf segmentation method that combines mutual information with neural networks to better generalise to unknown samples and adapt to variations in leaf shape and appearance to distinguish and identify different tree species. First, a model combining a Variational Autoencoder (VAE) and a segmentation network is used as a pre-segmenter to obtain dynamic masks. Secondly, the dynamic masks are combined with the segmentation masks generated by the mask generator module to construct the initial mask. Then, the patcher module uses the Mutual Information Minimum (MIM) loss as an optimisation objective to reconstruct independent regions based on this initial mask. The process of obtaining dynamic masks through pre-segmentation is unsupervised, and the entire experimental process does not involve any label information. The experimental method was performed on tree leaf images with a naturally complex background using the publicly available Pl@ntLeaves dataset. The results of the experiment showed that compared to existing excellent methods on this dataset, the IoU (Intersection over Union) index increased by 3.9%.