There is an arising need for effective wound dressings that retain the bioactivity of a cellular treatment, but without the high costs and complexities associated with manufacturing, storing, and applying cell-based products. As skin wound recovery is a dynamic and complicated process, a significant obstacle to the healing of skin wounds is the lack of an appropriate wound dressing that can imitate the microenvironment of healthy skin and prevent bacterial infection. It requires the well-orchestrated integration of biological and molecular events. In this study, we have fabricated full-thickness skin graft biocomposite membranes to target full-thickness skin excision wounds. We reinforced human amniotic membrane (hAM) with electrospun polycaprolactone (PCL) to develop composite membranes, namely, PCL/hAM and PCL/hAM/PCL. Composite membranes were compared for physical, biological, and mechanical properties with the native counterpart. PCL/hAM and PCL/hAM/PCL displayed improved stability and delayed degradation, which further synergically improved the rapid wound healing property of hAM, driven primarily by wound closure analysis and histological assessment. Moreover, PCL/hAM displayed a comparable cellular interaction to hAM. On application as a wound dressing, histological analysis demonstrated that hAM and PCL/hAM promoted early epidermis and dermis formation. Studies on in vivo wound healing revealed that although hAM accelerates cell development, the overall wound healing process is similar in PCL/hAM. This finding is further supported by the immunohistochemical analysis of COL-1/COL-3, CD-31, and TGF-β. Overall, this conjugated PCL and hAM-based membrane has considerable potential to be applied in skin wound healing. The facile fabrication of the PCL/hAM composite membrane provided the self-regenerating wound dressing with the desired mechanical strength as an ideal regenerative property for skin tissue regeneration.
Read full abstract