This paper describes a mechanism to explain low-level light emission in biology. A biological analog of the electrical circuitry, modeled on the parallel plate capacitor, traversed by a helical structure, required to generate electromagnetic radiation in the optical spectral range, is described. The charge carrier required for the emissions is determined to be an accelerating electron driven by an ATP-induced reverse electron transfer. The radial velocity component, the emission trajectory, of the moving charges traversing helical protein structures in a cyclotron-type mechanism is proposed to be imposed by the ferromagnetic field components of the iron in the iron–sulfur proteins. The redox systems NADH, riboflavin, and chlorophyll were examined with their long-wavelength absorption maxima determining the energetic parameters for the calculations. Potentials calculated from the axial velocity components for the riboflavin and NADH systems were found to equal the standard redox potentials of these systems as measured electrochemically and enzymatically. The mechanics for the three systems determined the magnetic moments, the angular momenta, and the orbital magnetic fluxes to be adiabatic invariant parameters. The De Broglie dual wave–particle equation, the fundamental equation of wave mechanics, and the key idea of quantum mechanics, establishes the wavelengths for accelerating electrons which, divided into a given radial velocity, gives its respective emission frequency. Electrons propelled through helical structures, traversed by biologically available electric and magnetic fields, make accessible to the internal environment the optical spectral frequency range that the solar spectrum provides to the external environment.
Read full abstract