The ICR-derived glomerulonephritis (ICGN) mice consist of heterozygous and homozygous groups and are considered to be a good model for human idiopathic nephrotic syndrome. To reveal changes in cell-surface carbohydrate construction, 24 lectins were applied to kidney sections of 10-, 30- and 50-week-old male heterozygous and homozygous ICGN mice and age-matched male ICR mice. Bandeiraea simplicifolia lectin-I (BSL-I), which specifically binds to alpha-D-galactopyranosyl groups, showed positive staining in the glomeruli of ICGN mice, but not in those of ICR mice. Positive BSL-I staining was observed only in distal tubules of homozygous ICGN mice. Lectin blotting for BSL-I demonstrated characteristic glycoproteins (45, 58 and 64 kD) in ICGN but not in ICR mice, and the levels of these molecules augmented in homozygous ICGN mice with the progression of renal failure. Moreover, succinylated wheat germ agglutinin, Dolichos biflorus agglutinin, Aleuria aurantia lectin and Ulex europaeus agglutinin-I showed positive staining only in the glomeruli of homozygous ICGN mice, but not in those of heterozygous ICGN or ICR mice. The staining intensities of Ricinus communis agglutinin-I, Phaseolus vulgaris agglutinin-E and -L, Lens culinaris agglutinin and Erythrina cristagalli agglutinin (ECL) in the glomeruli of homozygous ICGN mice were stronger than those of heterozygous ICGN and ICR mice. In conclusion, lectin histochemistry provided useful information for the diagnosis and prognosis of nephrotic lesions. Characteristic BSL-I binding glycoproteins may be pathogenic factors which cause renal disease in ICGN mice and are good tools to investigate the molecular mechanism of renal disorders in ICGN mice.