The order Tymovirales currently comprises five viral families with positive-sense RNA [(+)RNA] genomes that infect plants, fungi, and insects. Virion morphologies within the order Tymovirales differ between families, with icosahedral virions in the Tymoviridae and filamentous virions in the other "flexi"viridae families. Despite their different morphologies, these viruses are placed in the same order based on phylogenetic analyses of replicase-associated polyproteins. However, one of the families in the Tymovirales, Deltaflexiviridae, is considered to be capsidless because there have been no published reports of virion isolation. Here, we report that a new "flexivirus"-related (+)RNA virus, prospectively named Fusarium oxysporum icosahedral virus 1 (FoIV1), is icosahedral and that most deltaflexiviruses may have icosahedral virions. Phylogenetic analyses based on replicase-associated polyproteins indicated that FoIV1 forms a distinct group in the Tymovirales with some viruses originally assigned to the Deltaflexiviridae. Electron microscopy, protein analysis, and protein structure predictions indicate that FoIV1 open reading frame 4 encodes a single jelly-roll (SJR)-like coat protein (CP) that constitutes the icosahedral virions. Results of clustering analyses based on amino acid sequences and predicted CP structures suggested that most of the deltaflexiviruses have icosahedral virions composed of SJR-like CPs as in FoIV1, rather than having filamentous virions or capsidless. These results challenge the conventional understanding of viruses in the order Tymovirales, with important implications for revising its taxonomic framework and providing insights into the evolutionary relationships within this diverse and broad host range group of (+)RNA viruses.
Read full abstract