Abstract

Cryo-electron microscopy and tomography have allowed us to unveil the remarkable structure of icosahedral viruses. However, in the past few years, the idea that these viruses must have perfectly symmetric virions, but in some cases, it might not be true. This has opened the door to challenging paradigms in structural virology and raised new questions about the biological implications of "unusual" or "defective" symmetries and structures. Also, the continual improvement of these technologies, coupled with more rigorous sample purification protocols, improvements in data processing, and the use of artificial intelligence, has allowed solving the structure of sub-viral particles in highly heterogeneous samples and finding novel symmetries or structural defects. In this review, I initially analyzed the case of the symmetry and composition of hepatitis B virus-produced spherical sub-viral particles. Then, I focused on Alphaviruses as an example of "imperfect" icosahedrons and analyzed how structural biology has changed our understanding of the Alphavirus assembly and some biological implications arising from these discoveries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.