Unfrozen free and non-free water between ice crystals in flat and hummock ice in the Yellow River exists as water films with varying contents based on ice temperature. These contents can affect the radar wave velocity of the ice despite its theoretical dependence on the crystal structure and ice body components. The unfrozen water content in ice depends on the ice temperature, which is controlled by the air temperature, solar radiation, and ice thickness. Winter air temperature and radar-detected ice thickness data observed at the Shisifenzi bend in the Yellow River from 2020 to 2021 were analyzed. The unfrozen water content in the ice was the primary factor influencing the accuracy of flat ice thickness detection. The heat flux at the ice–water interface in the Yellow River was determined. The evolution of ice thickness and temperature were simulated using a one-dimensional (1D) ice thermodynamic model forced by the local weather station data (i.e., air temperature, solar radiation, wind speed, and cloud cover). On this basis, the measured ice thickness data of 13 drill holes were combined to calculate 1251 thermodynamically simulated ice thicknesses consistent with the ice thickness detection time of the radar; therefore, statistical relationships regarding the influence of air temperature and the combined action of air temperature and ice thickness on the radar wave velocity in granular and columnar ice during air temperature increases and decreases were determined. Finally, the statistical relationship between the combined influence of air temperature and ice thickness on radar wave velocity was selected as a parameterization scheme to dynamically correct the radar wave velocity of flat ice. To enhance the radar detection accuracy for flat ice thickness, the radar wave velocity of ice was parameterized as a function. Given the presence of unfrozen frazil ice and accumulated broken ice blocks in the Yellow River, radar is suggested to detect the thickness of different types of ice in future research.