AbstractIce-stream discharge fluctuations constitute an independent means of forcing unsteady ice-shelf behavior, and their effect must be distinguished from those of oceanic and atmospheric climate to understand ice-shelf change. In addition, ice-stream-generated thickness anomalies may constitute a primary trigger of ice-rise formation in the absence of major sea-level fluctuations. Such triggering may maintain the current ice-rise population that, in turn, contributes to long-term ice-sheet stability. Here, we show that ice-stream-generated fluctuations of an ideal, two-dimensional ice shelf propagate along two characteristic trajectories. One trajectory permits instantaneous transmission of grounding-line velocity changes to all points down-stream. The other trajectory represents slow transmission of grounding-line thickness changes along Lagrangian particle paths.