Determining the criticality of ice shapes is a necessary condition for verifying compliance with icing airworthiness regulations. However, the clear, concise, and applicable criterion based on the geometric characteristics of ice shapes has not been clearly given out by current advisory circulars. To address this problem, this paper summarizes aerodynamic performance items and recommended ice shapes the latest version of CCAR-25 and corresponding advisory circulars for a variety of flight phases, including takeoff, holding, en route, DTO, etc., instead of the single phase of holding in the previous research. Based on the geometric classification of the ice shapes, the dominant parameters of various ice shapes are clarified by the correlation between the geometric parameters and aerodynamic effects. The geometric parameters to determine the criticality of specific ice shapes are defined as the roughness height and range for the roughness ice and the total projection height in the direction of lift for the horn ice. On this basis, the detailed determination criterion of critical ice shape geometries corresponding to different flight phases and aircraft components is formulated, which will provide an operational selection methodology for determining the geometries of critical ice shapes at the airworthiness certification stage.
Read full abstract