Antifreeze proteins (AFPs) are produced by many species of teleost fish that inhabit potentially lethal ice-laden seawater and afford them protection from freezing. To date type I AFPs have been fully characterized in two teleost orders: Pleuronectiformes and Scorpaeniformes. In this study, we report the isolation and complete characterization of a type I AFP present in fish from a third order: cunner (Tautogolabrus adspersus), order Perciformes (family Labridae). This protein was purified from blood plasma and found to belong to what is now known as classical type I AFP with their small size (mass 4095.16 Da), alanine richness (> 57 mol%), high α-helicity (> 99%) with the ability to undergo reversible thermal denaturation, 11 amino acid (ThrX(10)) repeat regions within the primary structure, the capacity to impart a hexagonal bipyramidal shaping to ice crystals and the conservation of an ice-binding site found in many of the other type I AFPs. Partial de novo sequencing of the plasma AFP accounted for approximately half of the peptide mass. Sequencing of a combined liver and skin cDNA library indicated that the protein is produced without a signal sequence. In addition the translated product of the AFP cDNA suggests that it codes for the AFP isolated from plasma. These results further solidify the hypothesis that type I AFPs are multiphyletic in origin and suggest that they represent remarkable examples of convergent evolution within three orders of teleost fish.