Stainless steel is widely used in construction due to its combination of excellent mechanical properties, durability and aesthetics. Towards more sustainable infrastructure, stainless steel is expected be more commonly specified and to feature in more substantial structural applications in the future; this will require larger and typically welded cross-sections. While the structural response of cold-formed stainless steel sections has been extensively studied in the literature, welded sections have received less attention to date. The stability and design of conventionally welded and laser-welded austenitic stainless steel compression members are therefore the focus of the present research. Finite element (FE) models were developed and validated against a total of 59 experiments, covering both conventionally welded and laser-welded columns, for which different residual stress patterns were applied. A subsequent parametric study was carried out, considering a range of cross-section and member geometries. The existing experimental results, together with the numerical data generated herein, were then used to assess the buckling curves given in European, North American and Chinese design standards. Following examination of the data and reliability analysis, new buckling curves were proposed, providing, for the first time, design guidance for laser-welded stainless steel members.
Read full abstract