A robust radial junction (RJ) structure directly constructed upon the surface of a flexible Al foil substrate shows a promising potential to boost wearable and portable applications, where the silicon nanowire (SiNW) supported multilayer has proven beneficial in excellent mechanical stability and sufficient light harvesting. Assigned to the beneficial backreflection contributed by the Al foil, a much larger light current can be achieved than that on glass. While a comprehensive understanding of the light absorption under the backreflection of the substrate remains mainly unexplored. Herein, a straightforward comparison of light absorption of RJ units on Al and glass substrates, within a theoretical framework based on a finite-element simulation, is performed. Then, taking SiNW geometric parameters and i-layer thickness into account, the evolutions of light harvesting and the external quantum efficiency curves are systematically studied. These results indicate that, under the backreflection of the substrate, the light absorption shows a reduced dependency on SiNW geometry and i-layer thickness to some extent, laying a critical basis to establish a simpler/easier fabrication process for high-performance flexible RJ thin film photovoltaics.
Read full abstract