The objective of these experiments was to determine whether living and training in moderate hypoxia (MHx) confers an advantage on maximal normoxic exercise capacity compared with living and training in normoxia. Rats were acclimatized to and trained in MHx [inspired PO2 (PI(O2)) = 110 Torr] for 10 wk (HTH). Rats living in normoxia trained under normoxic conditions (NTN) at the same absolute work rate: 30 m/min on a 10 degrees incline, 1 h/day, 5 days/wk. At the end of training, rats exercised maximally in normoxia. Training increased maximal O2 consumption (VO2 max) in NTN and HTH above normoxic (NS) and hypoxic (HS) sedentary controls. However, VO2 max and O2 transport variables were not significantly different between NTN and HTH: VO2 max 86.6 +/- 1.5 vs. 86.8 +/- 1.1 ml x min(-1) x kg(-1); maximal cardiac output 456 +/- 7 vs. 443 +/- 12 ml x min(-1) x kg(-1); tissue blood O2 delivery (cardiac output x arterial O2 content) 95 +/- 2 vs. 96 +/- 2 ml x min(-1) x kg(-1); and O2 extraction ratio (arteriovenous O2 content difference/arterial O2 content) 0.91 +/- 0.01 vs. 0.90 +/- 0.01. Mean pulmonary arterial pressure (Ppa, mmHg) was significantly higher in HS vs. NS (P < 0.05) at rest (24.5 +/- 0.8 vs. 18.1 +/- 0.8) and during maximal exercise (32.0 +/- 0.9 vs. 23.8 +/- 0.6). Training in MHx significantly attenuated the degree of pulmonary hypertension, with Ppa being significantly lower at rest (19.3 +/- 0.8) and during maximal exercise (29.2 +/- 0.5) in HTH vs. HS. These data indicate that, despite maintaining equal absolute training intensity levels, acclimatization to and training in MHx does not confer significant advantages over normoxic training. On the other hand, the pulmonary hypertension associated with acclimatization to hypoxia is reduced with hypoxic exercise training.
Read full abstract