This study aimed to determine a standardized cut-off value for abnormal 18F-fluorodeoxyglucose (FDG) accumulation in the thyroid gland. Herein, 7013 FDG-PET/CT scans were included. An automatic thyroid segmentation method using two U-nets (2D- and 3D-U-net) was constructed; mean FDG standardized uptake value (SUV), CT value, and volume of the thyroid gland were obtained from each participant. The values were categorized by thyroid function into three groups based on serum thyroid-stimulating hormone levels. Thyroid function and mean SUV with increments of 1 were analyzed, and risk for thyroid dysfunction was calculated. Thyroid dysfunction detection ability was examined using a machine learning method (LightGBM, Microsoft) with age, sex, height, weight, CT value, volume, and mean SUV as explanatory variables. Mean SUV was significantly higher in females with hypothyroidism. Almost 98.9% of participants in the normal group had mean SUV < 2 and 93.8% participants with mean SUV < 2 had normal thyroid function. The hypothyroidism group had more cases with mean SUV ≥ 2. The relative risk of having abnormal thyroid function was 4.6 with mean SUV ≥ 2. The sensitivity and specificity for detecting thyroid dysfunction using LightGBM (Microsoft) were 14.5 and 99%, respectively. Mean SUV ≥ 2 was strongly associated with abnormal thyroid function in this large cohort, indicating that mean SUV with FDG-PET/CT can be used as a criterion for thyroid evaluation. Preliminarily, this study shows the potential utility of detecting thyroid dysfunction based on imaging findings.