A new efficacious tuberculosis vaccine targeting adolescents/adults represents an urgent medical need. The M72/AS01E vaccine candidate protected half of the latently-infected adults against progression to pulmonary tuberculosis in a Phase IIb trial (NCT01755598). We report that three immunizations of mice, two weeks apart, with AS01-adjuvanted M72 induced polyfunctional, Th1-cytokine-expressing M72-specific CD4+/CD8+ T cells in blood and lungs, with the highest frequencies in lungs. Antigen-dose reductions across the three vaccinations skewed pulmonary CD4+ T-cell profiles towards IL-17 expression. In blood, reducing antigen and adjuvant doses of only the third injection (to 1/5th or 1/25th of those of the first injections) did not significantly alter CD4+ T-cell/antibody responses; applying a 10-week delay for the fractional third dose enhanced antibody titers. Delaying a full-dose booster enhanced systemic CD4+ T-cell and antibody responses. Cross-reactivity with PPE and non-PPE proteins was assessed, as Mycobacterium tuberculosis (Mtb) virulence factors and evasion mechanisms are often associated with PE/PPE proteins, to which Mtb39a (contained in M72) belongs. In silico/in vivo analyses revealed that M72/AS01 induced cross-reactive systemic CD4+ T-cell responses to epitopes in a non-vaccine antigen (putative latency-associated Mtb protein PPE24/Rv1753c). These preclinical data describing novel mechanisms of M72/AS01-induced immunity could guide future clinical development of the vaccine.
Read full abstract