We construct inhomogeneous isoparametric families of hypersurfaces with non-austere focal set on each symmetric space of non-compact type and rank ${\geq }3$. If the rank is ${\geq }4$, there are infinitely many such examples. Our construction yields the first examples of isoparametric families on any Riemannian manifold known to have a non-austere focal set. They can be obtained from a new general extension method of submanifolds from Euclidean spaces to symmetric spaces of non-compact type. This method preserves the mean curvature and isoparametricity, among other geometric properties.