The presence of gray mold can seriously affect the yield and quality of strawberries. Due to their susceptibility and the rapid spread of this disease, it is important to develop early, accurate, rapid, and non-destructive disease identification strategies. In this study, the early detection of strawberry leaf diseases was performed using hyperspectral imaging combining multi-dimensional features like spectral fingerprints and vegetation indices. Firstly, hyperspectral images of healthy and early affected leaves (24 h) were acquired using a hyperspectral imaging system. Then, spectral reflectance (616) and vegetation index (40) were extracted. Next, the CARS algorithm was used to extract spectral fingerprint features (17). Pearson correlation analysis combined with the SPA method was used to select five significant vegetation indices. Finally, we used five deep learning methods (LSTMs, CNNs, BPFs, and KNNs) to build disease detection models for strawberries based on individual and fusion characteristics. The results showed that the accuracy of the recognition model based on fused features ranged from 88.9% to 96.6%. The CNN recognition model based on fused features performed best, with a recognition accuracy of 96.6%. Overall, the fused feature-based model can reduce the dimensionality of the classification data and effectively improve the predicting accuracy and precision of the classification algorithm.
Read full abstract