Abstract

The intentional presence or cross-contamination of peanuts in other nut products can result in severe health problems for consumers allergic to peanuts. It is therefore essential to identify the presence of these allergenic compounds in commercialized nut products prior to their sale. For this purpose, we assessed the performance of a visible near infrared (Vis-NIR) and a shortwave infrared (SWIR) hyperspectral imaging (HSI) systems working in the spectral regions 419-1007 nm and 842-2532 nm, respectively, to identify peanut pieces in different chopped nuts (almonds, hazelnuts and walnuts). Two strategies were evaluated to create the training and validation sets. In Strategy I, these sets were composed of spectra belonging to individual pixels, whereas in Strategy II, the mean spectrum of each individual piece of nut was used. We used partial least squares discriminant analysis (PLS-DA) to develop the classification models, and the results were assessed by means of the values obtained for the sensitivity, specificity, and non-error rate (NER) statistics. The external validation procedure showed excellent classification results, with a NER of 98.3 % and 99.8 % for the Vis-NIR and SWIR systems, respectively, for Strategy I, and 100 % for both systems when Strategy II was followed. These results therefore confirm the viability of using HSI technology together with multivariate classification methods to detect peanut pieces in other chopped-nut products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.