Pulse Detonation Engine (PDE), is an emerging and promising propulsive technology all over the world in the past few decades. A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. Theoretically, a PDE can be operate from subsonic to hypersonic flight speeds. Pulsed detonation engines offer many advantages over conventional air-breathing engines and are regarded as potential replacements for air-breathing and rocket propulsion systems, for platforms ranging from subsonic unmanned vehicles, long-range transportation, high-speed vehicles, space launchers to space vehicles. This article highlights the operating cycle of PDE, starting with the fuel-oxidizer mixture, combustion and Deflagration to detonation transition (DDT) followed by purging. PDE combustion process, a unique process, leads to consistent and repeatable detonation waves. This pulsed detonation combustion process causes rapid burning of the fuel-oxidizer mixture, which cannot be seen in any other combustion process as it is a thousand times faster than any other mode of combustion. PDE not only holds the capability of running effectively up to Mach 5 but it also changes the technicalities in space propulsion. The present paper is the extension of the previous study which is also a well characterized status report of PDE in different areas. The present study deals with the categorization of the design approach, computations & simulations, flow visualization, DDT & Thrust enhancement, PDRE’s, experimental detonation engines with some of the experience and research undertaken in Punjab Engineering College under the complete supervision and guidance of Prof. Tejinder Kumar Jindal followed by applications of PDE technology.
Read full abstract