In our study, we aimed to create an inflammation model in endothelial and macrophage cell lines and to examine the changes in the expression of hyperpolarization activated cyclic nucleotide gated (HCN) channels at the molecular level. HUVEC and RAW cell lines were used in our study. 1µg/mL LPS was applied to the cells. Cell media were taken 6h later. TNF-α, IL-1, IL-2, IL-4, IL-10 concentrations were measured by ELISA method. Cell media were cross-applied to cells for 24h after LPS. HCN1/HCN2 protein levels were determined by Western-Blot method. HCN-1/HCN-2 gene expressions were determined by qRT-PCR method. In the inflammation model, a significant increase in TNF-α, IL-1, and IL-2 levels was observed in RAW cell media compared to the control. While no significant difference was observed in IL-4 level, a significant decrease was observed in IL-10 level. While a significant increase in TNF-α level was observed in HUVEC cell medium, no difference was observed in other cytokines. In our inflammation model, an 8.44-fold increase in HCN1 gene expression was observed in HUVEC cells compared to the control group. No significant change was observed in HCN2 gene expression. 6.71-fold increase in HCN1 gene expression was observed in RAW cells compared to the control. The change in HCN2 expression was not statistically significant. In the Western-Blot analysis, a statistically significant increase in HCN1 level was observed in the LPS group in HUVEC cells compared to the control; no significant increase in HCN2 level was observed. While a statistically significant increase in HCN1 level was observed in the LPS group in RAW cells compared to the control; no significant increase in HCN2 level was observed. In immunofluorescence examination, it was observed that the level of HCN1 and HCN2 proteins in the cell membrane of HUVEC and RAW cells increased in the LPS group compared to the control group. While HCN1 gene/protein levels were increased in RAW and HUVEC cells in the inflammation model, no significant change was observed in HCN2 gene/protein levels. Our data suggest that the HCN1 subtype is dominant in endothelium and macrophages and may play a critical role in inflammation.
Read full abstract