Biaxial tensile testing of the silicone elastomer fabricated by additive manufacturing (AM) for wearable biomedical devices is presented. Silicone elastomer has unique mechanical properties ideal for stretchable parts in wearable biomedical devices. Biaxial tensile testing, in comparison to the uniaxial tensile and compression tests, is more representative for materials with large, multidirectional stretch. This study investigates the experimental setup and methods to measure and characterize mechanical properties of AM solid and porous silicone elastomer sheets on equi-biaxial stretch (with the stretch ratio up to 2). Four hyperelastic material models were applied to characterize the AM silicone sheet and evaluated through the finite element analysis (FEA) to quantify the fit to biaxial tensile test results. The Yeoh model with C10 = 80.7 kPa, C20 = –2.11 kPa, and C30 = 0.22 kPa has the best match to the experimentally measured stress-strain curve as well as the force and strain in FEA. This study demonstrates that the effects of raster angle and thickness are insignificant in the stress-strain curve of an AM silicone elastomer with solid cross-section. This study also demonstrates that AM can fabricate anisotropic porous silicone elastomer parts with different stiffness in x- and y-directions.
Read full abstract