The Skyrme–Faddeev model is a three-dimensional nonlinear field theory that has topological soliton solutions, called hopfions, which are novel string-like solutions taking the form of knots and links. Solutions found thus far take the form of torus knots and links of these, however torus knots form only a small family of known knots. It is an open question whether any non-torus knot hopfions exist. In this paper we present a construction of knotted fields with the form of cable knots to which an energy minimization scheme can be applied. We find the first known hopfions which do not have the form of torus knots, but instead take the form of cable and hyperbolic knots.