This paper presents a comprehensive assessment procedure for evaluating Ensemble-based Machine Learning algorithms in the context of exoplanet classification. Each of the algorithm hyperparameter values were tuned. Deployments were carried out using the cross-validation method. Performance metrics, including accuracy, sensitivity, specificity, precision, and F1 score, were evaluated using confusion matrices generated from each implementation. Machine Learning (ML) algorithms were trained and used to identify exoplanet data. Most of the current research deals with traditional ML algorithms for this purpose. The Ensemble algorithm is another type of ML technique that combines the prediction performance of two or more algorithms to obtain an improved final prediction. Few studies have applied Ensemble algorithms to predict exoplanets. To the best of our knowledge, no paper that has exclusively assessed Ensemble algorithms exists, highlighting a significant gap in the literature about the potential of Ensemble methods. Five Ensemble algorithms were evaluated in this paper: Adaboost, Random Forest, Stacking, Random Subspace Method, and Extremely Randomized Trees. They achieved an average performance of more than 80% in all metrics. The results underscore the substantial benefits of fine tuning hyperparameters to enhance predictive performance. The Stacking algorithm achieved a higher performance than the other algorithms. This aspect is discussed in this paper. The results of this work show that it is worth increasing the use of Ensemble algorithms to improve exoplanet identification.