AimsLiver fibrosis is a crucial pathological feature which could result in cirrhosis and hepatocarcinoma. But until now, there is no favourable treatment for it. Apigenin (APG) is a flavonoid, which exhibits efficient anti-liver fibrosis activity, but its underlying mechanisms were rarely studied. So this work aims to estimate the potential therapeutic action of APG on liver fibrosis rats and to gain insight into its system-level mechanisms. Main methodsHepatic fibrosis was induced by CCl4 in Wistar rats, and APG was given in the light of the regimen. Biochemical indexes, histopathological change and immunohistochemistry of liver were evaluated. The optimal effect group of APG was selected for further transcriptomic and proteomic analysis. Key findingsAPG ameliorated liver fibrosis via reducing the levels of AST, ALT, ALP, LDH, Hyp, TP, TB, DB, HA, LN, PCIII and IV-C, mitigating fibrosis and inflammation of liver in H&E and Masson staining. Mechanistically, APG elevated the activity of ALB, SOD and GSH-PX with reducing the level of MDA. The results of microarray and TMT revealed that 4919 genes and 4876 proteins were differentially expressed in the APG and model groups. Besides, transcriptomics and proteomics analyses unfolded 120 overlapped proteins, enriched in 111 GO terms containing apoptotic process, angiogenesis, cell migration and proliferation, etc. Meanwhile, KEGG pathway analysis showed that 26 pathways containing HIF-1/MAPK/eNOS/VEGF/PI3K/Akt signaling pathway, regulation of actin cytoskeleton and focal adhesion mostly. SignificanceAPG can ameliorate CCl4-induced liver fibrosis via VEGF-mediated FAK phosphorylation through the MAPKs, PI3K/Akt, HIF-1, ROS, and eNOS pathways, which may hopefully become the anti-liver fibrosis activity of natural product.