Ethnopharmacological relevanceWound healing is a complex and dysnamic process supported by a myriad of cellular events that are tightly coordinated to repair efficiently damaged tissue. Populus nigra L. (Salicaceae) flower buds are traditionally used in the treatment of dermatitis, upper respiratory tract infections, rheumatism and wounds. Aim of the studyThe aim of this study was to assess the wound healing potential of black poplar ointment containing 10 or 20 % of Populus nigra ethanolic flower buds extract using the excision model in rats. Materials and methodsTwo ointments (10 and 20 %) were prepared from Populus nigra flower buds ethanolic extract and topically applied on the area of excised skin of the rats for either 14 or 20 days. Morphological, macroscopic, histological and biochemical parameters were evaluated. ResultsThe results showed that the extract contained high amounts of total phenols (89.5 ± 7.7 mg caffeic acid equivalent/g of extract) and hydrolysable tannins (142.05 ± 2.55 mg tannic acid equivalent/g of extract), in correlation with strong DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and beta-carotene bleaching with values of 96.31 ± 3.42 and 85.27 ± 1.79 %, respectively. Anti-inflammatory potential was illustrated by lipoxygenase and cyclooxygenase inhibition (52.80 ± 0.2 and 53.88 ± 2.55 %, respectively). Treatment with Populus nigra ointment (10 and 20 %) promoted wound contraction of 97.37 ± 1.19 and 97.28 ± 0.91 %, respectively. The antioxidant marker enzymes, catalase (0.10 ± 0.001; 0.08 ± 0.003 U/mg protein) and superoxide dismutase (363.34 ± 24.37; 317.82 ± 53.83 U/mg protein) activities in the granulation tissues were upgraded with respective treatments of 10 or 20 % ointment. Concurrently, the myeloperoxidase activity (2.21 ± 1.01; 2.13 ± 0.75 U/mg protein) was repressed, indicating anti-inflammatory potential, when compared to untreated, standard and excipient groups. Moreover, a significant increase in respective levels of hydroxyproline (p < 0.001) (28.05 ± 1.20; 25.29 ± 1.17 μg/mg tissue) and hexosamine (p < 0.05) (20.18 ± 1.21; 18.95 ± 1.98 μg/mg tissue) was triggered, reflecting a high regeneration of collagen in the scarred tissue. Histological examination of treated skin tissue revealed higher rates of re-epithelialization, lower neutrophils infiltration and re-vascularization in comparison to the control group. ConclusionGiven that the 10 % ointment was the optimal concentration, our findings offer an efficient drug formula for wound healing.
Read full abstract