Human erythrocytes were shown previously to catalyze the oxyhemoglobin-requiring hydroxylation of aniline, and the reaction was stimulated apparently preferentially by NADPH in the presence of methylene blue (K. S. Blisard and J. J. Mieyal, J. Biol. Chem. 254, 5104, 1979). The current study provides a further characterization of the involvement of the NADPH-dependent electron transport system in this reaction. In accordance with the role of NADPH, the hydroxylase activity of erythrocytes or hemolysates from individuals with glucose-6-phosphate dehydrogenase deficiency (i.e., with diminished capacity to form NADPH) displayed decreased responses to glucose or glucose 6-phosphate, respectively, in the presence of methylene blue in comparison to samples from normal adults; maximal activity could be restored by direct addition of NADPH to the deficient hemolysates. Kinetic studies of the methylene blue-stimulated aniline hydroxylase activity of normal hemolysates revealed a biphasic dependence on NADPH concentrations: a plateau was observed at relatively low concentrations ( K m NADPH ~ 20 μm), whereas saturation was not achieved at the higher concentrations of NADPH. The latter low efficiency phase (i.e., at the higher concentrations of NADPH) could be ascribed to a direct transfer of electrons from NADPH to methylene blue to hemoglobin. The high efficiency phase suggested involvement of the NADPH-dependent methemoglobin reductase; accordingly 2′-AMP, an analog of NADP +, effectively inhibited this reaction, but the pattern was noncompetitive. This behavior is suggestive of a mechanism by which both NADPH and methylene blue are substrates for the reductase and interact with it in a sequential fashion. The kinetic patterns observed for variation in NADPH concentration at several fixed concentrations of methylene blue, and vice versa, are consistent with this interpretation.
Read full abstract