GABAA receptors (GABAARs) are targets for important classes of clinical agents (e.g., anxiolytics, anticonvulsants, and general anesthetics) that act as positive allosteric modulators (PAMs). Previously, using photoreactive analogs of etomidate ([3H]azietomidate) and mephobarbital [[3H]1-methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid ([3H]R-mTFD-MPAB)], we identified two homologous but pharmacologically distinct classes of general anesthetic binding sites in the α1β3γ2 GABAAR transmembrane domain at β +-α - (β + sites) and α +-β -/γ +-β - (β - sites) subunit interfaces. We now use competition photolabeling with [3H]azietomidate and [3H]R-mTFD-MPAB to identify para-substituted propofol analogs and other drugs that bind selectively to intersubunit anesthetic sites. Propofol and 4-chloro-propofol bind with 5-fold selectivity to β +, while derivatives with bulkier lipophilic substitutions [4-(tert-butyl)-propofol and 4-(hydroxyl(phenyl)methyl)-propofol] bind with ∼10-fold higher affinity to β - sites. Similar to R-mTFD-MPAB and propofol, these drugs bind in the presence of GABA with similar affinity to the α +-β - and γ +-β - sites. However, we discovered four compounds that bind with different affinities to the two β - interface sites. Two of these bind with higher affinity to one of the β - sites than to the β + sites. We deduce that 4-benzoyl-propofol binds with >100-fold higher affinity to the γ +-β - site than to the α +-β - or β +-α - sites, whereas loreclezole, an anticonvulsant, binds with 5- and 100-fold higher affinity to the α +-β - site than to the β + and γ +-β - sites. These studies provide a first identification of PAMs that bind selectively to a single intersubunit site in the GABAAR transmembrane domain, a property that may facilitate the development of subtype selective GABAAR PAMs.
Read full abstract