The hydrovinylation of styrene and ring-substituted styrene molecules by the ionic nickel precursor trans-[Ni(2,4,6-Me3C6H2) (CH3CN) (P(CH2Ph)3)2]BF4 in THF solution has been investigated. The chemoselectivity towards hydrovinylation products is about 99%. For styrene the conversion is nearly complete and the regioselectivity towards the vinylation in the α-position in the conjugated aryl olefin derivatives is 100%. The yield of 3-phenyl-1-butene reaches 97% with minor amounts of the isomerization products cis- and trans-2-phenyl-2-butene. The turnover rate of the reaction at 25°C, 15 bar (initial pressure) of ethylene with a styrene/[Ni] ratio 1000/1 is 1915 h−1. With styrene derivatives substituted in the vinyl fragment, the hydrovinylation reaction was very limited; however those substituted in the phenyl fragment (ArCH=CH2; Ar:p- and m-Me(C6H4), p- and m-Et(C6H4), p-and m-vinyl(C6H4), p- and m-Cl(C6H4), p-MeO(C6H4) and m-NO2(C6H4)) showed similar selectivity to styrene but different turnover rates. Activity decreases with the substituent in the sequence Cl∼OMe∼CH=CH2∼H∼CH2CH3&>;Me&>;NO2 related with the coordination ability of the olefin. Activity of the para derivatives is slightly higher than that of the meta analogues. The ionic compound [Ni(2,4,6-Me3C6H2) (CH3CN) ((PhCH2)2PCH2CH2P(CH2Ph)2)]BF4 and the neutral trans-[NiBr(2,4,6-Me3C6H2) (P(CH2Ph)3)2] do not show any activity in the codimerization reaction of styrene and ethylene in the same conditions.
Read full abstract