Lamprophyres are porphyritic dyke-rocks, readily recognisable in the field, which seemed to have become enveloped in petrological mystery because of their scattered and often contradictory literature. Important characteristics common to all members of this extremely heterogeneous group are suggested to include their intrusion at a late stage in any igneous event, the presence of essential amphibole or biotite coupled with peculiar chemistry, and their lack of felsic phenocrysts. Panidiomorphic texture is usual, though by no means exclusive to lamprophyres. At least four lamprophyre subgroups may be recognised; these are quite distinct in petrology, chemistry, paragenesis and petrogenesis although individual members of each subgroup are closely similar. The alkaline lamprophyre subgroup is considered in detail: new definitions of camptonite and monchiquite are proposed which are believed to reconcile majority usage whilst accomodating existing analytical data; the term ouachitite is reassessed and fourchite suggested to be superfluous; sannaite, an alkali feldspar-rich alkaline lamprophyre, may be more abundant than its frequency within the literature implies — some “minettes” and “vogesites” are more correctly termed sannaite, particularly those occurring in carbonatite complexes. Camptonites most probably represent alkali basalt magmas which became unusually hydrous through influence of an alkaline pluton, and then evolved at relatively low pressures. Varied evidence is considered to suggest that the nearly isotropic base in monchiquites typically consists of altered glass rather than analcime; where analcime is present it probably formed along with zeolites by secondary processes. “Monchiquitic” is not an appropriate synonym for “analcime-bearing”, as in some literature. Field, chemical and statistical evidence is taken to suggest that many monchiquites are either chilled heteromorphs of camptonites or camptonitic magmas which crystallised under high CO 2 activities. Liquid immiscibility seems to be more extensively developed in camptonites and monchiquites than in any other igneous rocks, and is probably governed by their hydrous state. The genetic connotations of lamprophyre names, asserted early in their history but later questioned, are here modified but reaffirmed: broadly minettes and related lamprophyres connote post-orogenic granites or mildly potassic (shoshonitic) alkaline rocks, alkaline lamprophyres connote alkali basalts or sodic alkaline rocks, and alnoites connote carbonatites.
Read full abstract