The synthesis of Nd-Fe-B magnetic powders via chemical techniques presents significant promise, but poses challenges due to their inherent chemical instability. In this investigation, Nd-Fe-B hard magnetic particles were synthesized utilizing an eco-friendly and simple microwave-assisted hydrothermal synthetic method. The technique involves the synthesis of the Nd-Fe-B oxide precursor using the microwave-assisted hydrothermal method, followed by reduction–diffusion using CaH2. The microwave-assisted hydrothermal technique presents a viable approach for preparing Nd-Fe-B precursor particles, offering advantages such as time and energy efficiency and environmental sustainability. The synthesized Nd-Fe-B particles demonstrated a coercivity of up to 2.3 kOe. These magnetic particles hold significant potential for use in high-performance permanent magnets, and can effectively contribute to developing high-energy density exchange-coupled nanocomposite magnets. This study also offers valuable insights into the design and synthesis of additional magnetic materials based on rare earth elements.
Read full abstract