Abstract

Designing an antibacterial agent with a suitable water vapor permeability, good mechanical properties, and controlled antibiotic release is a promising method for stopping bacterial infection in wound tissue. In this respect, this work aims to prepare novel flexible polymeric hydrogel films via integrating UiO-66 into the polymeric carboxymethyl cellulose (CMC) hydrogel for improving the mechanical and antibiotic release performances. First, we performed a green hydrothermal synthetic method to synthesis UiO-66 and followed by encapsulating Tetracycline (TC) through immersion in its aqueous solution. Also, the casting technique was utilized to integrate different concentrations of the TC-encapsulated UiO-66 (TC@UiO-66, 5% to 15%) in the polymeric CMC matrix (CMC/TC@UiO-66) cross-linked by citric acid and plasticized by glycerol. The release performance showed a low initial burst release with a controlled release over 72 h in the artificial sweat and simulated wound exudate (PBS, pH 7.4) media. The in vitro cytotoxicity and antibacterial activity results revealed a good cytocompatibility toward Human skin fibroblast (HFF-1) cells and a significant activity against both E. coli and S. aureus with 1.3 and 1.7 cm inhibition zone, respectively. The obtained results recommend CMC/TC@UiO-66 films as a potential antibacterial wound dressing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.