Infrared and Raman spectra of the ABX4 compound anglesite (PbSO4) were collected to 43 GPa at 300 K in three separate pressure media. A major transition in the spectra initiates at 23 GPa that is characterized by shifting and/or splitting of most of the fundamental vibrations of the sulfate group. On decompression, PbSO4 reverts to the ambient anglesite (barite) structure. This transition is kinetically impeded within more hydrostatic pressure media and does not proceed to completion within a neon medium even at pressures as high as 43 GPa. The previously observed spectral shift at 13 GPa occurs in less hydrostatic media (such as 4:1 methanol:ethanol), and involves subtle splitting of a few modes, particularly the (SO4)2− tetrahedral stretching and bending-derived Raman and infrared modes. Another possible shift occurs near 33 GPa, and primarily involves the appearance of new sulfate antisymmetric bending modes in the infrared spectrum and the onset of new sulfate antisymmetric stretching modes in the Raman spectrum. It is likely that PbSO4 begins to convert sluggishly to the P212121 ABX4 structure starting at 23 GPa, with a possible additional crystallographic distortion or shift in compression mechanism occurring near 33 GPa. The spectral shift at 13 GPa in non-hydrostatic media may be a differential stress-induced structural distortion, or a subtle transition that is not accessible within more hydrostatic media. Our results emphasize that apparently equilibrium transitions such as that at 23 GPa may be notably suppressed within more hydrostatic media.
Read full abstract