Hydropower is a reliable source of renewable energy, and its future expansion is likely to be in the form of either smaller new stream development (NSD) projects or powering existing non-powered dams. Thresholds for entrainment risk to fish and the requirements for fish exclusion at hydropower facilities often differ depending on the species involved, the characteristics of the facility, and the goals of stakeholders, but little quantitative information is present within the literature regarding the specific costs of fish exclusion measures. Cost data associated with protection, mitigation, and enhancement (PM&E) measures related to positive barrier screening were identified using keyword searches of an existing environmental mitigation cost data set and manual extraction from regulatory licensing documents available in the Federal Energy Regulatory Commission (FERC) eLibrary. This approach yielded a total of 50 p.m.&E mitigation measures with estimated capital construction costs pertaining to positive barrier screens and represented <10% of the 171 total FERC project dockets available in the data set. These data were highly skewed toward conventional relicensing projects, as <7% were associated with NSD projects. Results indicate highly variable costs are associated with fish screening, with flow-normalized costs one to two orders of magnitude higher for screening with the highest exclusion capability (≤0.09 in. spacing) compared with coarser screening (1–2 in.). These data provide an initial baseline for estimating exclusion costs for hydropower development and may help developers consider options for more fish-friendly generation technologies, though gaps remain relating to a lack of data, particularly for NSD projects.