Adsolubilization of 2-naphthol into an adsorbed layer of triblock poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO, Pluronics) copolymers on hydrophobically modified silica particles has been investigated. Four kinds of Pluronics (P103, P105, P123, and F108) were employed in order to understand the effect of the hydrophobicity of the surfactants on the adsolubilization. The amount of the Pluronics adsorbed of the maximum/saturation adsorption level was increased with a decrease in the HLB value, suggesting that the more hydrophobic Pluronics (P103 and P123) adsorb preferentially onto the hydrophobic silica surface over the more hydrophilic Pluronics (P105 and F108). The greater adsorbed amount of the more hydrophobic surfactants resulted in a greater amount of 2-naphthol adsolubilized into the adsorbed Pluronics layers. In the case of simultaneous addition of the Pluronics and 2-naphthol, the amount adsolubilized into the adsorbed P123 and P103 layers increased in their low-surfactant-concentration regime, reached a maximum, and then decreased with a further increase in the Pluronics concentration. On the other hand, for both the P105 and F108 copolymers, a decrease in the adsolubilized amount was not observed over the whole range of copolymer concentration investigated. This difference is attributed to a difference in the hydrophobicity of the micellar aggregates in solution and of the adsorbed layers on the hydrophobic surface. When 2-naphthol was added after replacement of the Pluronics supernatant by a surfactant-free solution, the final decrease in the adsolubilization was insignificant for all the Pluronics. Indeed, the maximum amount of adsolubilization was comparable to the corresponding amount obtained in the case of simultaneous addition.