Amino acid residues on PotB and PotC involved in spermidine uptake were identified by random and site-directed mutagenesis. It was found that Trp(8), Tyr(43), Trp(100), Leu(110), and Tyr(261) in PotB and Trp(46), Asp(108), Glu(169), Ser(196), Asp(198), and Asp(199) in PotC were strongly involved in spermidine uptake and that Tyr(160), Glu(172), and Leu(274) in PotB and Tyr(19), Tyr(88), Tyr(148), Glu(160), Leu(195), and Tyr(211) in PotC were moderately involved in spermidine uptake. Among 11 amino acid residues that were strongly involved in spermidine uptake, Trp(8) in PotB was important for insertion of PotB and PotC into membranes. Tyr(43), Trp(100), and Leu(110) in PotB and Trp(46), Asp(108), Ser(196), and Asp(198) in PotC were found to be involved in the interaction with PotD. Leu(110) and Tyr(261) in PotB and Asp(108), Asp(198), and Asp(199) in PotC were involved in the recognition of spermidine, and Trp(100) and Tyr(261) in PotB and Asp(108), Glu(169), and Asp(198) in PotC were involved in ATPase activity of PotA. Accordingly, Trp(100) in PotB was involved in both PotD recognition and ATPase activity, Leu(110) in PotB was involved in both PotD and spermidine recognition, and Tyr(261) in PotB was involved in both spermidine recognition and ATPase activity. Asp(108) and Asp(198) in PotC were involved in PotD and spermidine recognition as well as ATPase activity. These results suggest that spermidine passage from PotD to the cytoplasm is coupled to the ATPase activity of PotA through a structural change of PotA by its ATPase activity.
Read full abstract