The quest for a smooth transition from fossil fuels to clean and sustainable energy has warranted studies on alternative energy materials. Herein, we report on an experimental and theoretical study focused on hydrogen generation through the hydrolysis of microcrystalline cellulose (MCC) treated in different media (deionized water, sodium hydroxide) and MCC functionalized with magnesium (MCC-Mg), titanium (MCC-Ti), and niobium (MCC-Nb). The XRD results reveal the decreased crystallinity of MCC due to ball milling along with the formation of metal oxide composites between MCC and various metals (magnesium, titanium, and niobium). Theoretical studies using NVT molecular dynamic simulations with the NH chain thermostat implemented in the Dmol3 provides further support to the experimental results reported herein. The results from the experimental and theoretical studies revealed that ball milling and composite formation with metal species enhanced the kinetics of the hydrolysis of MCC and, consequently, hydrogen generation, while the addition of NaOH and urea inhibited the hydrogen yield.
Read full abstract