Rice straw is composed of complex lignocellulosic biomass, representing a major obstacle in its conversion to bioenergy. The objective of this study was to evaluate the usefulness of less explored fungal strains Trichoderma longibrachiatum (TL) and Pycnoporus sanguineus (PS) in improving hydrolysis and bioavailability of rice straw in anaerobic digestion (AD). The fungal treatment of rice straw for 10 days by PS and TL increased biogas production by 20.79% and 17.85% and reduced soluble chemical oxygen demand (sCOD) by 71.43% and 64.70%, respectively. The AD samples containing fungal-treated rice straw showed higher lignocellulolytic enzyme activities contributing to better process performance. The taxonomic profile of microbial communities in treated samples showed increased diversity that could sustain consistent system performance and exhibit enhanced resilience against pH fluctuations. Metagenomic analysis revealed 60.82% increase in Proteobacteria in PS and 11.58% increase in Bacteroidetes in TL-treated rice straw samples resulting in improved hydrolysis.