Glaciers have an important hydrological buffering effect, but their current rapid reduction raises concerns about future water availability and management. This work presents a hydrological sensitivity analysis to different climatic and glacier cover conditions, carried out over four catchments with area between 8 and 1050 km2, and with glacierization between 2% and 70%, in the Italian Alps. The analysis is based on past observations, and exploits a unique dataset of glacier change and hydro-meteorological data. The working approach is aimed at avoiding uncertainties typical of future runoff projections in glacierized catchments. The results highlight a transition from glacial to nival hydrological regime, with the highest impacts in August runoff over smaller catchments. The buffering effect of current glaciers has largely decreased if compared to the Little Ice Age, up to 75% for larger catchments, but it is still important during warm and dry summers like 2003. We confirm a non-linear relationship between glacier contribution in late summer and catchment area/percent glacierization. The peak in runoff attributable to glacier melt, expected in the next 2–3 decades on highly glacierized alpine catchments, has already passed in the study area.
Read full abstract