Using a variety of oceanographic data, including direct volume transports in the Florida Strait, and Argo float profiles and drift velocities at 24°N and 36°N in the North Atlantic, inverse calculations are presented in which the net meridional transport, down to a depth of approximately 1600 m, is estimated at both latitudes for a 5-year period 2003–2007. The upper ocean is divided into seven layers using neutral density, and mass conservation constraints have been applied to a closed box bounded by these latitudes, including the Florida Strait. Ekman layer transports have been included in the top-most layer, and the inverse calculation has solved for changes from the initial reference velocities, Ekman and Florida Strait transports, given a priori estimates on the accuracy of each of these quantities. Solutions with and without transformations due to Mediterranean Water (MW) formation are made. Our results indicate that (1) time-averaged transport estimates derived from Argo have significant less eddy noise than individual hydrographic sections, (2) Argo drift velocities provide information to the inverse solution for the ocean interior, and (3) comparison of the total integrated interior mass transports in the thermocline waters for the period 2003–2007 with the previous estimates based on trans-ocean hydrographic sections shows that, within the errors of our estimation, the upper limb of the Atlantic Meridional Overturning Circulation has not significantly changed since 1957.