Nanocomposite Me–C–N:H coatings (Me is TiNb, TiZr or TiAl), with relatively high non-metal/metal ratios, were prepared by cathodic arc method using TiNb, TiZr and TiAl alloy cathodes in a CH 4 + N 2 atmosphere. For comparison purposes, a-C–N:H films were also produced through evaporating a graphite cathode in a similar atmosphere. The films were characterized in terms of elemental and phase compositions, chemical bonds, texture, hardness, adhesion and friction behavior by GDOES, XPS, Raman spectroscopy and XRD techniques, surface profilometry, hardness and scratch adhesion measurements, and tribological tests. The nanocomposite films consisted of a mixture of crystalline metal carbonitride and amorphous carbon nitride. The non-metal/metal ratio in the films composition was found to range between 1.8 and 1.9. For the metal containing nanocomposites, grain size in the range 7–23 nm, depending on the metal nature, were determined. As compared with the a-C–N:H, the Me–C–N:H films exhibited a much higher hardness (up to about 39 GPa for Ti–Zr–C–N:H) and a better adhesion strength, while the coefficients of friction were somewhat higher (0.2–0.3 for Me–C–N:H and 0.1 for a-C–N:H).