A 2.0-kb DNA fragment downstream from the hydrogenase-encoding structural genes within the hydrogenase gene cluster of Bradyrhizobium japonicum was sequenced. Analysis of the nucleotide (nt) sequence revealed three open reading frames (ORFs), designated hupC, hupD and hupF, which encode polypeptides of 28, 21 and 10.7 kDa, respectively. Based on analysis of the nt sequence and physiological studies, hupSL (hydrogenase structural genes) and hupCDF are organized as a single transcriptional unit. Plasmid pRY12 carrying hupSL genes did not complement (restore) hydrogenase activity of the hupSL deletion mutant strain (JHCS2), whereas the activity of the mutant was considerably restored by pLD22 harboring the entire hydrogenase operon ( hupSLCDF genes). Western blots revealed a very low level of hydrogenase protein in JHCS2 containing pRY12. The results suggest that the products of the hupCDF genes may be involved in either stabilizing the hydrogenase peptides (i.e., from degradation) or in post-translational regulation of hydrogenase production. The products of hupC and hupD were successfully expressed in Escherichia coli by a phage T7 promoter system, although the apparent sizes of the gene products were slightly larger than those calculated from the deduced amino-acid sequences.