The monolayer grafting on the oxide-free Si surface is challenging due to vulnerability of the surface against oxide formation in an ambient atmosphere. Most of the conventional studies focused on organic solvent-based chemistry and solvent and substrate interfaces, and residual solvents after the monolayer grafting play a key role in producing the highly stable monolayers. CO2 in its supercritical state (SCCO2) provides an elegant engineering solution for the problem faced as it can be used as inert processing environment and as carrier fluid for monolayer grafting taking up the role of organic solvents. In this work, monolayers of alkyl organophosphonic acids (OPAs) and functional OPAs were grafted on hydrogen-terminated oxide-free Si surfaces using the SCCO2 process. Grafted monolayers were physically and chemically characterized to verify the successful monolayer formation and determine the nature of the covalent binding configuration on the surface. To broaden the prospects of practical utility of the process and the OPA monolayer, the (3-bromopropyl)phosphonic acid (BPPA) monolayer was demonstrated to undergo secondary functionalization by terminal group substitution to convert the Br terminal group to the OH terminal group and secondary monolayer grafting to assemble 4-fluorothiophenol on top of the BPPA monolayer. The ability of monolayers to sustain secondary functionalization processing qualitatively hints toward ordered and stable monolayers of OPAs. The developed SCCO2 process in this work presents a single-step, green, and scalable method to graft the OPA monolayer on oxide-free Si which can employed in the future for monolayer doping, highly selective biochemical sensors, and targeted biological interactions.
Read full abstract