Abstract

The preparation of monolayers based on an organic radical and its diamagnetic counterpart has been pursued on hydrogen-terminated silicon surfaces. The functional monolayers have been investigated as solid-state metal/monolayer/semiconductor (MmS) junctions showing a characteristic diode behavior which is tuned by the electronic characteristics of the organic molecule. The eutectic gallium-indium liquid metal is used as a top electrode to perform the transport measurements and the results clearly indicate that the SOMO-SUMO molecular orbitals impact the device performance. The junction incorporating the radical shows an almost two orders of magnitude higher rectification ratio (R(|J1V/J-1V|) = 104.04) in comparison with the nonradical one (R(|J1V/J-1V|) = 102.30). The high stability of the fabricated MmS allows the system to be interrogated under irradiation, evidencing that at the wavelength where the photon energy is close to the band gap of the radical there is a clear enhancement of the photoresponse. This is translated into an increase of the photosensitivity (Sph) value from 68.7 to 269.0 mA/W for the nonradical and radical based systems, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.