This study focuses on the comparative modeling and refueling simulations of hydrogen refueling stations for hydrogen-powered vehicles and high-pressure hydrogen storage options in tanks. The study further aims to simulate these under actual conditions in Ontario, Canada for better assessment which can be treated as a case study as well. The specific tests explore the modeling of hydrogen flow between the recharging station to the car's tank, as well as the optimization of transient variations in temperature, pressure and mass flow rate of hydrogen throughout the process of refueling a fuel cell electric vehicle. The H2FILLS program is utilized to assist for the simulation studies. The primary objective is to replicate various practical weather conditions, tank pressures, flow rates, and refueling periods for different categories of high-pressure hydrogen storage tanks and analyze their storage efficiency. The three different commercially available high-pressure type-IV hydrogen storage tanks were considered in the study as tank-I, tank-II and tank-III with working pressures of 500 bar, 700 bar, 700 bar, and hydrogen storage capacity of 9.5 kg, 4.6 kg, and 5 kg, respectively. Seven different ambient temperatures were selected to mimic seasonal effects. When the power output is constant, with temperature increases, flow rate decreases, and therefore time required to refuel also increases. There is a linear relationship between the final mass flow rate and the ambient temperature, where the mass flow rate drops by approximately 1.8 kg/h for every 10 °C rise in temperature. The variation in ultimate mass flow rate between the highest and lowest ambient temperatures is roughly 5.4 kg/h. Based on the refueling time and docking, undocking, downtime it’s been found that approximately five minutes is wasted between each vehicle. This can help reduce average of 230.02 kt, 231.70 kt, and 235.06 kt CO2 emission per year for vehicle-III, vehicle-II, and vehicle-I, respectively. Lastly, yearly CO2 reduction forecast shows that it may reach 0.9 Mt, 1.6 Mt, 2.7Mt, 3.76 Mt, and 4.73 Mt in the year 2030, 2035, 2040, 2045, and 2050, respectively corresponding to the Global Net-Zero scenario.