The increasing demand in interventional cardiology urges for reprocessing of single-use-labelled medical devices. To fulfil this aim, accurate and validated regeneration protocols are mandatory to guarantee sterility, functionality and safeness. The reprocessing protocol was realized by decontamination with chloro-donors, cleaning with enzymatic solutions and hydrogen peroxide gas plasma sterilization. Reprocessing effects on ablation and electrophysiology catheters were evaluated by assessing physical–chemical changes on surfaces and bulks, as a function of the reprocessing cycles number. Conventional optical microscopy and environmental scanning electron microscopy (ESEM) underlined the presence of micro-scratches on the polyurethane shaft surface. A clear correlation was found between surface damages and number of reprocessing cycles. Atomic force microscopy (AFM) confirmed the occurrence of physical–chemical etching of the polyurethane shaft caused by the hydrogen peroxide plasma sterilization, with increasing of nano-roughness at increasing number of the reprocessing cycles. UV–Vis spectra performed on the incubation solution of polymeric shaft sample, showed an absorbance increase at about 208nm. This fact could be attributed to the water elution from the polymer of low molecular weight oligomers. The presence of hydrolysis products of the polymeric shaft after incubation demands both the characterization of the products released in the solution and the chemical characterization of the water exposed surface.
Read full abstract