ABSTRACTIt is well known that tungsten tri-oxide (WO3) exhibits electrochromic and gasochromic properties. When Pt-nanoparticle-dispersed tungsten oxide (Pt-WO3) is exposed to hydrogen gas, the optical and electrical properties of the Pt-WO3 change drastically. Consequently, it is expected that thin films of WO3 can be applied as hydrogen gas leakage sensors. In this study, thin films of Pt-WO3 were prepared on glass substrates using a sol-gel process. The optical and electrical properties of the films were evaluated. Amorphous and crystalline WO3 were easily obtained by changing the heat-treatment temperature. The ion diffusion coefficient of the film depended on the WO3 structure (i.e., whether it was amorphous or crystalline) because the density of amorphous WO3 is lower than that of crystalline WO3. Films with low crystallinity were found to have superior chromic properties to both those with high crystallinity and amorphous films. Thin films of Pt-WO3 prepared at 673K showed the largest change in optical transmittance and electrical conductivity when exposed to H2 gas compared with thin films prepared at other temperatures. When this film was exposed to 100% H2 gas, the normalized transmittance decreased rapidly (in less than 0.2 sec) from 100% to almost 50%. The optical absorbance of the film was dependent on the H2 gas concentration (mixed with N2 gas) in the range from 0.1 to 5% and the relationship between them was linear. The relationship between the electrical conductivity and hydrogen gas concentration (mixed with N2 gas) in the range from 100 to 10000ppm was also linear.
Read full abstract